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Abstract—Chromosome banding patterns are very important
features for karyotyping, based on which cytogenetic diagnosis
procedures are conducted. Due to cell culture, staining, and
imaging conditions, image enhancement is a desirable prepro-
cessing step before performing chromosome classification. In this
paper, we apply a family of differential wavelet transforms (Wang
and Lee, 1998), (Wang, 1999) for this purpose. The proposed
differential filters facilitate the extraction of multiscale geometric
features of chromosome images. Moreover, desirable fast com-
putation can be realized. We study the behavior of both banding
edge pattern and noise in the wavelet transform domain. Based on
the fact that image geometrical features like edges are correlated
across different scales in the wavelet representation, a multiscale
point-wise product (MPP) is used to characterize the correlation
of the image features in the scale-space. A novel algorithm is pro-
posed for the enhancement of banding patterns in a chromosome
image. In order to compare objectively the performance of the
proposed algorithm against several existing image-enhancement
techniques, a quantitative criteria, the contrast improvement ratio
(CIR), has been adopted to evaluate the enhancement results.
The experimental results indicate that the proposed method
consistently outperforms existing techniques in terms of the CIR
measure, as well as in visual effect. The effect of enhancement
on cytogenetic diagnosis is further investigated by classification
tests conducted prior to and following the chromosome image
enhancement. In comparison with conventional techniques, the
proposed method leads to better classification results, thereby
benefiting the subsequent cytogenetic diagnosis.

Index Terms— -splines, chromosome karyotyping, contrast im-
provement ratio, differential operators, image enhancement, scale-
space, wavelets.

I. INTRODUCTION

T HE BANDING patterns of chromosomes constitute very
important features for cytogeneticists to classify different

types of chromosomes and, thus, produce a karyotype [3]. Based
on chromosome karyotyping, clinical diagnostic procedures can
be performed. Due to the presence of noise and other sources of
distortion resulting from poor sample preparation, imaging and
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Fig. 1. A chromosome spread image (a) and its karyotype (b).

digital quantization, vague, low-contrast band patterns are usu-
ally obtained in the image. Therefore, enhancement of these pat-
terns is desirable before band descriptors are extracted [4]. As
an example, from the chromosome images in Fig. 1, it can be
seen that banding patterns are transverse image features, per-
pendicular to the medial axis of the chromosome. These geo-
metric features require image transforms that can facilitate their
extraction. Laplacian filtering has been used for extraction of
these banding features [3].

The aim of image enhancement is to improve the visibility
of low-contrast features while suppressing noise. Among var-
ious techniques, differential or difference operators have long
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been used for image enhancement because they facilitate the
extraction of important geometric features like edges. For in-
stance, image sharpening techniques use the gradient informa-
tion given by the Sobel, Roberts, and/or compass operators [5].
An adaptive method was reported on mammographic image en-
hancement based on the first derivative [6]. Since differential
operators can be regarded as high-pass filters, these techniques
actually sharpen the image by extrapolating its high-frequency
information.

Since geometric features in an image are known to occur at
multiple scales, multiscale differential operators can be used for
image enhancement. Among them, the derivative of Gaussian
has received considerable attention. This operator estimates the
gradient of an image after smoothing it with a Gaussian func-
tion. The Laplacian pyramid, on the other hand, is one of the
variants that has also been used for image enhancement [7]. Be-
cause human eyes are known to be anisotropic in their sensitivity
to details along different orientations, two-directional Laplacian
operators are employed in an adaptive unsharp masking algo-
rithm in [8]. Contrast enhancement based on a multiscale gra-
dient operator has also been studied in [9]. In [10] and [11],
mammographic and echocardiogram image enhancement uti-
lizing multiscale differential wavelets have also been reported.
The wavelet transform in some sense can be regarded as a dif-
ferential operation, and for this reason it also has been used for
medical image enhancement [12], [13].

Motivated by the close approximation of-spline bases to
Gaussian and wavelet theory, in [1] and [2], we presented a
formal framework for multiscale image representations using
differential operators. Besides Laplacian operators, which are
isotropic, different kinds of wavelets were designed for multi-
scale differential representations of images. These include gra-
dient operators and multidirectional operators. An image can be
decomposed and reconstructed from its differential components
at multiple scales. By taking advantage of the spline properties,
a fast algorithm was derived in [2]. The resulting wavelet rep-
resentations are different from the usual wavelet models in that
they are over-complete and translation invariant. It is shown in
[14], that thresholding in a translation invariant wavelet domain
can eliminate unpleasant artifacts introduced by modification
of orthogonal wavelet expansion coefficients. In general, these
over-complete representations are more flexible than orthogonal
representations and are more suitable for geometry-based image
processing.

In this paper, we make use of our differential representa-
tions for chromosome image enhancement by exploiting the
geometric correlation of image features in these domains. The
remainder of this paper is organized as follows. In Section II,
we introduce a class of wavelets with which an image can be
represented by its second-order derivatives. Specifically, the fil-
ters used for both decomposition and reconstruction are given.
In Section III, we analyze the characteristics of edges in these
scale-space representations and their cross-scale correlations. A
novel enhancement scheme is proposed. It makes use of cross-
scale statistics to enhance the salient features of an image. Sec-
tion IV presents the experimental results. In particular, we com-
pare the objective performance of the proposed method with
that of several conventional enhancement methods, using the

Fig. 2. A cubicB-spline wavelet, which is the second derivative of a cubic
B-spline.

criterion of contrast improvement ratio (CIR). In order to eval-
uate further the effectiveness of the proposed enhancement al-
gorithm, Section V compares the chromosome classification re-
sults following various enhancement methods. Section VI con-
cludes the paper.

II. M ULTIRESOLUTION DIFFERENTIAL REPRESENTATIONS OF

IMAGES

A family of wavelets which are the derivatives of splines are
designed in [2]. An image can be synthesized from its deriva-
tive components at multiple scales. These differential operators
include gradient, Laplacian, second derivative and multidirec-
tional operators. At each scale, these operators resemble the
Sobel, the Roberts and the compass operators [5]. As shown in
[15], filters of different sizes and directions are usually needed
to prevent edge blurring. In this section, we review the wavelet
representation for second derivative operators, which are used
in this paper. More details can be found in [1] and [2].

In the one-dimensional (1-D) case, a differential wavelet
which resembles the Mexican-hat or Laplacian of Gaussian
(LoG) wavelet is defined as the second derivative ofsplines
of different order.

(1)

The cubic spline wavelet shown in Fig. 2 is of order ,
and is symmetric with respect to the origin. The definitions of
B-splines and its good properties can be found in [16].

The wavelet transform is defined as

(2)

If we introduce the smoothing operations ,
, it can be shown that the above wavelet transforms

are the second derivatives of smoothing operations.



WANG et al.: CHROMOSOME IMAGE ENHANCEMENT USING MULTISCALE DIFFERENTIAL OPERATORS 687

A multiscale representation of an image can be obtained
by convoluting of the image with a two-dimensional (2-D)
smoothing function defined as at
different scales. For discrete implementation, we approximate
the three directional derivative components or wavelet decom-
positions by

(3)
As a clarification, in the original definition of the above formula
in [1] and [2], there was an error. Here, we actually use the ap-
proximation formula to compute the second directional deriva-
tive components for the sake of deriving the recursive formula.
From this formula, the three directional wavelets are defined as

where we denote by and the transfer functions of the
first- and second-order difference operators and .

By taking advantage of the refinability property of the splines,
we can obtain a recursive algorithm for the computation of these
three local partial derivatives along the dyadic scales .
Consequently, we have the followingdiscrete decomposition
formula :

(4)

where represents the separable convolution of
the rows and columns of the image with the 1-D filters
and , respectively. The symboldenotes the Dirac filter
whose impulse is one at the origin and zero elsewhere. The
up-sampling operation of a sequence { } by an integer factor

is defined as .
One can reconstruct the image by using the followingdis-

crete reconstruction formula:

(5)

where , , are the
finite-impulse responses (FIRs) of the transfer function

, and and are the impulse responses of and
.

TABLE I
FIR FILTERS FORDECOMPOSITION ANDRECONSTRUCTIONBASED

ON THE LINEAR SPLINES

TABLE II
FIR FILTERS FOR DECOMPOSITION AND RECONSTRUCTION

BASED ON THECUBIC SPLINES

Furthermore, if we define the three corresponding reconstruc-
tion wavelets as

then the image can be recovered in con-
tinuous form from its three directional derivative components

as

Besides translation invariance and low computational com-
plexity, this wavelet representation has two other advantages.
First, the edge components of the image are displayed in the
transform domain. One can make use of this information to min-
imize edge blurring, which usually must be addressed by image
enhancement algorithms. Second, directional adaptation can be
done to overcome the limitation of conventional enhancement
methods that use isotropic Laplacian operators.

In this section, we specify the discrete filters for cases of
and , as used in the decomposition and reconstruction

formulas. They are listed in Tables I and II. The derivation of
these filters can be found in [2].

Since all the filters , consist of linear combinations
of binomials, the computational efficiency can be improved by
using thePascal triangular algorithm, with only additions and
bit shiftsoperations. The computational complexity of this ap-
proach is [2], where is the size of signal. This is a sig-
nificant improvement over the recursive procedures described
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Fig. 3. Chromosomes in Fig. 1(a) are classified into 24 classes according to
the banding patterns of different classes, known as the ideograms shown here.

in (4) and (5), which are of complexity . Also, it is
easy to show that these filters allow integer to integer mapping.

III. CROSS-SCALE FEATURE CORRELATION AND THE

PROPOSEDENHANCEMENT ALGORITHM

A. Chromosome Banding Patterns

Staining techniques such as Giemsa or Quinacrine, bind more
specifically to certain DNA base groups than to others and,
thus, produce a characteristic transverse band pattern in chromo-
somes. These banding patterns allow the human chromosomes
to be classified into 24 different types. As an extension to the
Denver nomenclature a standard ideogram system was estab-
lished. It uses schematic representations to define the classifi-
cation model according to the characteristic band patterns of
the different chromosomes. Fig. 3 shows the ideograms of the
chromosomes. The automatic procedure to identify the chromo-
somes in a cell according to the standard ideogram models is
known as computer karyotyping. Diagnostic information can be
derived from the karyotype by examining the chromosome band
patterns and the overall chromosome complement, and relating
any abnormalities to the clinical diagnosis.

With the advent of staining techniques that produce distinc-
tive banding patterns, automatic chromosome recognition be-
comes a reality. The banding patterns are among the most im-
portant features for chromosome identification [4]. Numerous
efforts have been made to utilize these features for chromosome
karyotyping. The banding patterns appear as sequences of al-
ternate dark and light bands, as shown in Fig. 3. We can model
these patterns as superpositions of a set of nonoverlapped 2-D
pulse or block edge signals [see (6)] with different strengths,
widths, and positions. Our enhancement algorithm aims to en-
hance these important edge patterns.

B. Analysis of an Ideal Banding Pattern

As discussed above, the banding patterns can be formed by
a set of nonoverlapped pulse patterns at different locations. For

simplicity, we begin with the 1-D case. Suppose we have the
following 1-D edge pattern

(6)

where and represent the magnification and width of the
pulse and is the step function

if
otherwise

(7)

The derivative of is

(8)

In the presence of noise, we can model the pattern as

(9)

where is a white Gaussian noise, with the auto correlation
function being

if
otherwise

(10)

In the discrete wavelet transform domain, the above edge signal
is transformed into

(11)

Because of the definition of wavelets in (1), the deterministic
part becomes

where we have used the fact that the derivative of a B-spline
function is the difference of the splines of lower orders at adja-
cent pixels. Therefore, the wavelet transform of a pulse edge are
simply the differences of two first-order derivative of-spline
functions with different smoothing sizes, as suggested in the
above equation. As a result, it is easy to understand that there are
two positive and negative peaks of different sizes in the trans-
form domain, as shown in Fig. 4. In addition, strong correla-
tion of the extrema between adjacent scales can be observed.
These extrema appear to propagate across different scales while
maintaining spatial correlation. Section III-C will discuss how
to measure such correlation.

Let us now look at the random part in (11). It is known that
a stationary random field remains stationary after convolutional
and derivative operations. Furthermore, if we use the density
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Fig. 4. Translation invariant wavelet decompositions of an ideal banding
pattern model. Top row is the pulse edge model. The next four rows are the
wavelet detailsW e(x) at dyadic scales 1, 2, 4, and 8, which are simply the
differences of two spline derivatives with different size and location.

Fig. 5. Wavelet decompositions of a pulse edge model with added white noise.
Top row shows the edge signal with added white noise. Bottom row shows the
reconstructed signal. The intermediate rows show the wavelet detailsW s(x)
at dyadic scales 1, 2, 4, and 8. The white noise is smoothed out with increasing
scales. Only those coefficients at edge points remain large.

of extrema to characterize the distribution of white noise in the
wavelet domain, we can show that the density of maxima
of white noise have the following form, according to a similar
analysis described in [17]:

(12)

where is the scale of smoothing and is the order of the
spline. In other words, the number of local maxima due to noise
decreases quickly as the scale goes up because of increased
smoothing. The average number of local maxima at is
half of that at scale . Fig. 5 shows such a process, which
clearly indicates that the white noise is smoothed out as the scale
increases.

Fig. 6. MPPs for the pulse edge pattern with added noise in Fig. 5. The first
three rows are the MPPs between adjacent scales 1 and 2, 2 and 4, and 4 and 8,
respectively. The next two rows are the MPP between three scales, 1, 2, and 4,
as well as 2, 4, and 8. From this figure it can be seen that the MPP reinforces
the signal while suppressing the noise.

C. Cross-Scale Correlation Measurement: Multiscale
Point-Wise Product (MPP)

Following the analysis in the previous section, we know that
edges occur across different scales, and they are correlated spa-
tially. In this paper, we have adopted the MPP to measure the
cross-scale correlation. The MPP is defined as

(13)

This criteria was used for detection and localization [18], de-
noising [19], and filtering of magnetic resonance images [13]. In
fact, even before the advent of wavelet transform, the MPP had
been used to enhance multiscale signal peaks while suppressing
noise, by exploiting the multiscale correlation of desired signals
[20], [21]. Since the maxima of due to edges in the
signal tend to propagate across scales, while the maxima
due to noise will not, reinforces the response of the signal
rather than the noise, as seen in Fig. 6. Fig. 7 shows another
cross-scale product example from a synthetic signal containing
various types of edges. This example indicates that the multi-
scale product has an inherent ability to suppress isolated and
narrow impulses while preserving the edge responses across dif-
ferent scales.

The characterization of cross-scale correlation statistics
of was studied in [18]. Let , be zero-mean, jointly
Gaussian random variables with covariance matrix

where is the correlation coefficient. The product
has the following probability density function (pdf):
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Fig. 7. Wavelet decompositions of a simulated banding block pattern using
the wavelet shown in Fig. 2. Top row is the block signal with added white noise.
From the second to the fifth row are the four wavelet decomposition coefficients
at scale 1, 2, 4, and 8. The sixth and eighth rows are the MPP between adjacent
scales. The ninth row is the MPPs between three scales (1,2, and 4). The tenth
row is the MPP between three scales (2, 4, and 8). From this figure, we observe
that strong correlations around edge points can be detected by the use of MPP.

where is the modified Bessel function of the second kind
and zero order. The resulting PDFs are generally non-Gaussian
and heavily tailed. The plots of these PDFs in [18] indicate there
is a relatively sharp peak at the origin. Therefore, it is easy to
understand why most MPP values are zero due to this high prob-
ability of occurrence. The MPP has also been used for detection
and estimation of step change locations [18].

So far, we have discussed only the cases involving 1-D sig-
nals. For 2-D signals, the MPP is sensitive to direction and
is different along the horizontal, vertical, and diagonal direc-
tion.Bearing these properties in mind, we propose the following
algorithm for 2-D image-enhancement.

D. Enhancement Algorithm

The proposed enhancement algorithm can be summarized by
the following three steps.

1) Perform multiscale differential decompositions of an
image using spline wavelets. Thus, we have a sequence
of wavelet decompositions

along the horizontal, vertical, and diagonal di-
rection. These wavelet decompositions take into account
the visual sensitivity to orientation of stimulus [22]. The
user interface has several options. The user can choose to
modify these wavelet directional components selectively
in order to highlight certain detailed information of the
image.

2) Sort the values of , , 2, 3 at each pixel in in-
creasing order. This way, one can find out which wavelet
components contribute more to the image. The user sets
threshold for different degree of enhancement. Larger

Fig. 8. Curve of the CIR as a function of the parameter lambda. It is a
monotonically increasing function.

Fig. 9. Local contrast is defined as the measure between a center region (C)
and a surrounding region (S). The size of the center and surrounding window is
3� 3 and 7� 7, respectively.

value of results in a high denoising effect, andvice visa.
Thresholding is performed using the following formula:

if

if
(14)

where is an adjustable constant, corresponding to
scale . The low-frequency components of the image

are kept unchanged.
3) After the wavelet components are modified in steps 1 and

2, the inverse wavelet transform is performed using the
reconstruction formula (5).

In (14), the choice of depends on the noise level in the
image. This is quite similar to the hard thresholding method
used in [23]. Because chromosome images used in this study
have little noise, the value of is set to be very small. The user
has the option to specify different value of for different de-
gree of enhancement. Fig. 8 shows the relation of the local CIR
[see the definition in (16)] with this parameter. It can be shown
that the higher value the has, the greater contrast improve-
ment the method yields. Because high-frequency components
are usually displayed at low-scale resolutions, we set large
values at lower scales. At higher scales there remain low-fre-
quency components and the location of edges may migrate due
to smoothing. We, therefore, give low values at high-scale
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TABLE III
A COMPARISON OF THECIRS FROM DIFFERENT METHODS FOR

ENHANCING THE CHROMOSOMESPREAD IMAGES

resolutions. In our experiments, we usually set the values of
to be 5, 2, and 2 for the low-, medium-, and high-scale resolu-
tion, respectively. The software that we develop give clinicians
an option to change the value of this parameter in three direc-
tions in order to visualize the details of chromosome images se-
lectively.

For chromosome spread images, we also perform a histogram
stretch to enhance the contrast of the image.

IV. RESULTS AND COMPARISONS

A. Enhancement Performance Measurement

Ordinary techniques for image contrast enhancement can
be categorized generally into two types [5]. The first type is
based on the image histogram and modifies the brightness of
each pixel using statistical information about the image. For
the second type, the high- and low-frequency components of
an image are usually separated and manipulated before they
are recombined. An example of this type of method is unsharp
masking. Algorithms described in [6]–[8], [24], and [25] all
belong to the second type.

Quantification of contrast enhancement is generally difficult.
Furthermore, there is no universal measure for specifying either
the objective or the subjective performance of the enhancement
algorithm. Contrast is often defined as the difference in mean lu-
minance between an object and its surrounding. There are many
measures of contrast. We adopt the definition proposed in [26],
where the local contrast is defined as the difference of the mean
values in two rectangular windows centered on a pixel. Specif-
ically, the local contrast is defined as

(15)

where and are the average values of gray levels in the center
window and surrounding window of the pixel location , as
illustrated in Fig. 9. It gives the contrast measurein the range
[0,1]. The performance measure CIR is defined as the ratio of
the enhanced image and the original image within the region of
interest , i.e.,

(16)

TABLE IV
A COMPARISON OF THECIRS FROM DIFFERENT METHODS

FOR ENHANCING THE CHROMOSOMEKARYOTYPE IMAGES

where and are the local contrast values of the original and the
enhanced images, respectively. In our experiments, we assume
that is the whole image.

For objective evaluation of contrast improvement, the pro-
posed method is compared with three conventional enhance-
ment techniques. These are the adaptive contrast stretch (ACS),
the adaptive contrast enhancement (ACE), and the contrast gain
transform (CGT) [27]. The CGT and ACE parameters used in
[27] are 25 and 2.0 in our experiments. Theparameters used in
our proposed method for the three scales are 5, 2, and 2, respec-
tively. In addition, we also compare with the multiscale con-
trast enhancement (MCE) approach proposed in [28]. Chro-
mosomeimages are used in routine cytogenetic diagnosis and
cancer research. Image enhancement is desired for high-resolu-
tion display and visualization of the chromosome band patterns
[4]. A set of 21 human chromosome images, including 10 chro-
mosome metaphase spread images and 11 karyotype images,
were tested in the experiments. The test results, in terms of the
average CIRs measured from the spread and karyotype images,
are tabulated in Tables III and IV, respectively. Among all the
methods tested, the proposed approach consistently yields the
highest CIRs.

Fig. 10 shows one example of the spread image enhance-
ment using different enhancement methods. One can see
that the proposed wavelet method produces the best visual-
ization effect after enhancing the band patterns. The ACE
method and the CGT method, on the other hand, both cause
blurring at edges.

V. EFFECT OF IMAGE ENHANCEMENT

ON CHROMOSOMECLASSIFICATION

The effect of image enhancement is ultimately judged by the
accuracy of downstream chromosome classification, to deter-
mine if the enhanced images result in improved karyotyping
and, hence, improved diagnosis. It is well known that a normal
human cell contains 46 chromosomes. The procedure to identify
the chromosomes in a cell, according to the standard ideogram
system, is known as karyotyping. Diagnostic information can be
derived from the karyotype by examining the chromosome com-
plement and their band patterns, and relating the numerical and
structural abnormalities to biological or clinical significance. A
well-known example isDown’s syndrome(mongolism), which
is characterized by the presence of three chromosomes of class
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Fig. 10. A comparison of different methods for enhancing chromosome
images in Fig. 1(a). From top to bottom: enhancement using the proposed
method; MCE; CS; ACE and CGT, respectively.

21 [3]. Due to cell culture, staining and imaging condition, the
metaphase spread images captured by microscopy need to be
enhanced prior to feature extraction and classification.

Fig. 11. Error rate curves of the classification as a function of number of
features used. The methods tested are: ACE; CGT, ACS, unenhanced image
(UNE), and the proposed wavelet-based approach (WTES).

For this purpose, we use the Bayesian classifier for chromo-
some classification. For objective comparisons the chromosome
features are extracted using the same measurement procedure.
The features used in this study include normalized length,
density, density centrometric index (arm ratio), and weighted
density distribution measurements from each chromosome
[29]. The images were collected from a data archive at Dyna-
Gene Cytogenetics Laboratories, Houston, TX and are fairly
representative of routine sample quality. The dataset has 342
G-banded cells containing 15 136 chromosomes [29]. The clas-
sification results following different enhancement algorithms
are plotted in Fig. 11. It is evident that the images enhanced
by the proposed method result in the lowest classification error
rate, which decreases as the dimensionality of feature space
increases. These results indicate that enhanced images with the
proposed method appear to provide more useful information
and yield higher accuracy of classification. Hence, it will
likely benefit cytogenetic diagnosis because chromosome
abnormalities tend to be detected more effectively when the
karyotyping accuracy improves.

VI. CONCLUSION

In this paper, we apply a class of differential wavelets [2] to
chromosome image enhancement. It can also be used for general
image contrast improvement. The proposed wavelets have sev-
eral advantages for image enhancement. First, they are derived
from splines and can be implemented efficiently. Second, the
transforms are shift invariant and, thus, facilitate the measure-
ment of correlation of image features in the transform domain.
Third, the differential wavelet representations provide high-fre-
quency edge information along horizontal, vertical, and diag-
onal directions. We exploit such directional edge information in
the design of an image-enhancement algorithm. The disadvan-
tage of this approach is the increased memory requirement due
to the over-complete representations.
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The proposed image-enhancement algorithm actually makes
use of the information in the domain of the differential wavelet
representation for extrapolation. Due to this type of wavelet rep-
resentation, high-frequency features such as edges are charac-
terized. We can tailor the algorithm to make the images not
only sharper but also less noisy, so that they become visually
appealing to the cytogeneticist.

The proposed enhancement algorithm has achieved objec-
tive improvement with medical significance in terms of qualita-
tive contrast improvement and classification of chromosomes.
Therefore, this technique provides a useful tool to assist clini-
cians in diagnosis and research.

A Java script demo program has been written to provide
users with an interactive environment to test the method
using their own images. The address of the java program is
http://www.adires.com/09/index.shtml
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